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Abstract

We discuss a new extended inflationary scenario evading the difficulties of the

original model. Oar model can thermalize the energy in the bubble walls by

the necessary epoch, and establish a Robertson-Walker frame in the bubble

clusters. The essential new ingredient in our model is the observation that

the coupling of inflaton to the Jordan-Brans-Dicke field is expected to be

different from that of visible matter.

(NASA-CP-IB6595)

THE INFLATION IN

(Carne_ie-Mellon

GRAVITATIONAL COUPLINGS, OF

EXTENDED INFLATION

Univ.) I0 p CSCL 03_

N90-22504

Unclas

G_190 0279349

A
_, Operated by Universities Research Association Inc. under contract with the United States Department of Energy





Recently, La and Steinhardt 1 proposed a new inflationary universe scenario, dubbed

e_tended inflation, which allows the old inflation model of Guth 2 to succeed in percolating

the true vacuum phase. It is based upon a Jordan-Brans-Dicke (JBD) 3 theory coupled to

an inflaton field, whose potential admits both a metastable state and a true ground state,

separated by a potential barrier. Unfortunately the original extended inflation scenario

suffered from some serious flaws, as pointed out by Weinberg 4 and by La, Steinhardt,

and Bertschinger. s The problems found were twofold: While the true vacuum phase

did indeed percolate, there were still problems of too many large bubbles of the new

phase whose interiors could not be thermalized in time. There was also a problem with

establishing a common Robertson-Walker frame in the various bubble clusters which

would eventually coalesce to form our universe.

In this Letter, we will show that these problems with extended inflation can be avoided

in a new class of models promulgated by Damour, Gibbons, and Gundlach (DGG). e They

start with a generalized JBD model in which the JBD scalar field _ couples with different

strengths to "visible" matter and to "invisible" matter (thus leading to a violation of the

weak equivalence principle). We will follow the llne taken by DGG, and assume that

the inflaton of extended inflation has an "invisible" coupling to the JBD scalar field.

Since the identity of the inflaton is unknown, there is no reason to believe that it should

couple to the JBD scalar field in the same way as does normal matter. Although this

may seem ad hoc, it should be emphasized that such a situation in fact arises naturally

in superstring theories, 7 where the dilaton plays the role of the JBD scalar field. It is

the existence of a new parameter, namely the ratio of the couplings of visible matter and

the inflaton field to the JBD scalar field ¢, that allows us to evade the bounds on the w

parameter in JBD models.

We write the action for our theory in the conformal frame in which the visible sector

couples only to the metric g_,v, and not to the JBD field. Following the metric and



Riemann tensor conventions in Ref.(8), the action becomes:

S[g.,.,@, V/v,_x] = SSD[g._,,(_]+ Sv[g.,,,_v] + $I[9._,@, _,] (1)

where _bv,1 denotes the field content of the visible and inflaton sectors in a schematic way.

The Brans-Dicke gravitational action Ssn[g._, q'] is given by

/ [ O"@°q_@'ss_[g._,_1= d_v_ -¢R + _,g"__ , (2)

where w is the JBD parameter constrained by observations 1° to be greater than 500. It

was this constraint that led to the problems found in Refs.(4,5) with the original extended

inflation picture, since the analysis of the bubble distribution at the end of inflation led

to upper bounds on w (w < 20 or so), which are in conflict with the aforementioned

observational lower bound. That upper bounds should exist is not surprising, since if w

is taken to infinity, the theory just becomes the old inflationary model, which is known

to have a "graceful exit" problem. °

We now suppose that visible matter is described as usual via a perfect fluid stress-

energy tensor and will play no role in inflation. Denoting the inflaton field by '_I, its

action can be written as:

SI[g_,v,_, _b,] = / dCx _ [2(167rGNq_)1-f3gt'_0_IO_l_/

-(16_o_)_('-_)v(_,)], (3)

where/3 - /9i//3v and/3V, l are the couplings of the dilaton in DGG's analysis to the

visible and inflaton sectors. /3v is related to _v by ca = (/gv -_ - 6)/4. Solar system tests

of Brans-Dicke theories yield the constraint w > 500, which implies/3v < 0.022, while

present observations are consistent with 1_,1_- 1.6In s_[g._,_, @, v(_,) is the potential

for the inflaton and is assumed to be of the standard form for inducing a first-order phase

transition via bubble nucleation.
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Let us now write the metric in the standard Robertson-Walker form with scale factor

a(t). We will assume, as required for "extended" (as well as "old") inflation to occur,

that during inflation Cz = ¢0, and V(¢0) = pv, where the energy density of the false

vacuum, pv, dominantes the total energy density.

following equations of motion for a(t) and (I'(t):

+ -- = 167rGN_2 TM +
a2

,b 4; A t
_-+3 --a'_ 2w+3

Setting A = 8_rGNpF, we have the

2

a_

(4)

These equations are most easily solved in terms of the dimensionless field X = 16_'GN_.

This system of equations admits power law solutions for k = 0, just as in the original

extended inflation scenario:

a(t) = a(0)(l+ Bt)P;

x(t) = X(0)(1 + Bt)q;

p = (w - _ + 3/2)/[(2/3 - 1)_]

q = 2/(2/3- 1). (5)

Here t = 0 signifies the onset of inflation, and B is given by

B2= 4A_2(2fl- i)2[X(0)]x-2z (6)
(2,0+ + 9 - 4 2)"

It can easily be seen that the above results reduce to those found in Ref.(1) when ;3 = 1.

This is as it should be, since in this case, the conformal transformation that takes us

from DGG's original action to ours will act on the visible and inflaton sectors identically.

We now turn to the questions of whether inflation occurs in this model and whether

a "graceful exit" can be achieved. Clearly, a necessary condition for inflation to occur

in our theory is that the exponent p be greater tha:n one so that "_/a is positive definite

during the vacuum energy dominated period. This first constraint can be written in

terms of a_ and _ as

,0 + 3/2 > 2_ 2. (7)
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In order that sufficient inflation occur, we require a(t,na)/a(O) > 1027, where t,.,d

denotes the end of the inflationary period. Following the analysis of Ref.(4), we relate

a(tend)/a(O) to ¢(te.td)/6/'(0) via a(t,na)/a(O) = [_(t,,,d)/_(O)] p/q. Since ¢(tend) _ M_t,

and neglect of quantum gravity effects requires ,I,(0) > p_F/2 ",_ M 2, we arrive at our

second constraint:

54+ 3/2 > 1 + 10- 21og(M/1014GeV) 3. (8)

Next we turn to the constraints coming from percolation and thermalization of the

phase transition. The basic techniqffes for calculating tunneliing amplitudes in field the-

ories were developed by Callan and Coleman, 11 and require computation of the Euclidean

action of the bounce configuration that interpolates between the true and false vacuua.

The tunnelling rate per unit four-volume is then given by _ = A exp[--SE(@B)], where

A is the prefactor containing information about fluctuations about the bounce configu-

ration, and SE(_B)is the Euclidean action for this configuration (denoted by _B).

This analysis was extended to include the effects of (classical) gravity by Coleman

and De Luccia. 1_ Unfortunately, their analysis is not directly applicable to our case due

to the existence of the JBD field. In order to compute the tunnelling rate in this case,

we need to understand how to generalize the existing formalism to the case in which

the false vacuum is "rolling" due to the evolution of the q_ field during the bounce. An

attempt along these lines was pursued by Accetta and Romanelli is with some success.

However, for our purposes, we follow previous work of ours on the subject s and note that

at late times (or equivalently, for large values of the ,IBD field), the variations of ,I, can

be neglected, and we can compute _ using the analysis of Ref.(8).

The Euclidean action for the _I field in the truncated theory is given by

SE(_)I)---- /d 4z [_Xl-B(a._) 2 + X2(1-B)V(@I)] • (9)
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As per our analysis in Ref.(8), the formalism of Ref.(ll) can be applied to find a X-

independent bounce action. However, when proper care is taken in normalization and in

projection of the functional determinant to the subspace orthogonal to the translational

zero modes, a X dependence appears in the pre-factor:

= x = + Bt) (1o)

where A0 is the (constant) tunnelling rate for X = 1. Thus, the physical bubble nucleation

rate per unit four-volume is time dependent in this theory. This is quite unlike the case

in the original extended inflation model at late times, s'13

The parameter controlling the percolation properties of the phase transition in this

theory is 9 e = _(t)/H4(t), where H(t)is the Hubble parameter h(t)/a(t). In our model,

we have:

_(t) = _0_(0)2(1-_)(1 "q- Bt) 4_/(2_-1). (11)
p4j_4

In order for the nucleation to be successful, clearly e(t) must increase in time. This

implies that 4_/(2_/- 1) > 0, which in turn implies that either _ < 0 or _ > 1/2. This

will be subsumed by other constraints. The time, t¢,,d, for which e(t) is larger than some

critical value of order unity corresponds to the end of the inflationary period. 1'4'_

We now turn to the constraint coming from the requirement that the bubble clusters

that wilI comprise the observable universe have enough time to thermalize their energy.

The point is that the typical bubble cluster consists of a large bubble, together with

much smaller ones. Most of the energy of the bubble is tied up in the bubble walls, and

collisions with other bubbles are required in order to allow this energy to spread through

the bubble interior. The question is how long does it take for this energy to become

thermalized, so as to lead to a homogeneous and isotropic universe.

If too many large bubbles are still completing the thermalization process at cosmolog-

ically sensitive times, severe conflicts with Big-Bang predictions will clearly ensue. Thus,
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we must demand that the fraction of space in such bubbles be less than some predeter-

mined value when the tempereature is T. The volume fraction 1;> (r, tend), the fraction of

the volume contained in bubbles greater than a given (comoving) size r at the end of in-

flation, can be calculated exactly as in Ref.(4): _>(r, tend) --_ In[p-l(t_.a)](r0/r) _. Here ro

is the asymptotic comoving size Of a bubble nucleated at t.nd, _ -_ 4B_/(,_ + 3/2 -- 2B2),

and p(t) is the probability of finding a point in space in the false vacuum at time t:

p(t) "., exp[--C(t/tend) (v-1)3] "_ exp[--C(ro/r)3], where c is a constant of order unity.

Imposing the condition that );>(r,t,na) be less than 10 -n when the temperature is T,

we arrive at the constraint:

o: + 3/2 < (2 + 4[23 + l°g1°(M/1014GeV)zz+ loglo{ln[p-l(tend)]}+ l°gl°(eV/T)] / 3_' (12)

it is not unreasonable to suppose that p(te,d) < 1/e as in Ref.(4), so that for M --. 1014

GeV and n __ 5 at recombination (T __ 1/3 eV), we have the constraint _+3/2 < 20.7 _.

Note that setting _ = I we recover the results (and constraints) of Ref.(4). The result is

that whereas before the limit was _s < 20, the limit now is _/_2 < 20, which can easily

be satisfied for ca > 500.

Finally we turn to the question of reestablishing a common Robertson-Walker frame

in all the bubble clusters that will coalesce to form our universe. We must require

that there be some way for the system to remember the original (pre bubble-nucleation)

coordinates_ Weinberg 4 argues that such a record can be found in the time evolution

of a(t), or equivalently q,(t). Since constant Hubble parameter and q_(t) corresponds

to the de Sitter situation with no distinguished frame, we must require that there be

sufficient variations of these quantities. The relevant time interval over which these

variations should take place is between t,,,a and t(r_i,,), the time when bubbles with

asymptotic sizes equal to that of the observed universe were nucleated. The actual

interval may in fact be shorter since we expect that homogeneity and isotropy must
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hold by the time of recombination or perhaps even nucleosynthesis. Using the fact that

H(t)/H(te,a) = (r_,(t)/ro) 1/(p-1) _- (M/T) p-I, if we require a variation of m orders of

magnitude in the Hubble parameter H(t), we arrive at our final constraint:

+ 3/2 < _(2_ - 1) {1 + rrt-l[23 + log10(M/1014GeV) + loglo(eV/T)] _ + _. (13)

Taking M _ 1014 GeV, T .-_ 102 keV, and m = 1 as in R.ef.(4) leads to the constraint

w + 3/2 < 19_(2t3- 1) + _.

We plot the constraints given by Eqs.(7, 8, 12, 13), together with the constraint that

> 500 in Fig.(1). It should be clear from this plot that there is ample room for all

these constraints to be satisfied. If we make the constraints tighter (i.e., demanding

that a smaller fraction of space still be thermalizing at recombination, or more orders of

magnitude variation in H(t)), larger values of _ will be required.

To conclude then, we have constructed a model of extended inflation in which the

inflaton couples to the JBD field differently than standard visible matter. This yields a

theory in which the JBD field is massless (i.e. no potential for _ is required) and which

meets all the requirements for an acceptabie inflationary model with no fine-tuning! If

this avenue is to be pursued further, a realistic particle physics model with the required

couplings must be constructed.
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Figure Caption

Fig I: The _Llowed region in w -_ space is indicated. Curves 1, 2, 3, 4 correspond

to the constraints in Eqs.(7, 8, 12, 13). The observationaJ limit w = 500 is indicated.
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